

Curriculum Mapping Document

Computer Science

Linking our curriculum intention to our local community and real-life links to content:

The curriculum, through enrichment and real-life experiences during the school day and within enrichment opportunities, will maximise the use of the local area. We will link our curriculum to the following:

- Appreciate where ICT is used in the real world
- Recognise how ICT is used to benefit the local community and how ICT can be used to automate repetitive tasks
- How to remain safe when using ICT
- Respecting other people and their intellectual rights
- Working within the law
- Recognising different career paths within the ICT industry linking to the Gatsby Benchmarks
- By linking with local businesses, we explore career opportunities outside school
- Prepare students for using ICT for education

Year 7 Curriculum implementation

The Royal Society has identified three distinct strands within Computing, each of which is complementary to the others with each component being essential in preparing pupils to thrive in an increasingly digital world. Computer Science is the scientific and practical study of computation. The sequencing of lessons allows students to develop their knowledge as they progress through the year groups. In Year 7, we introduce programming to students at the start of the year by asking them to create webpages using HTML. By using the topic of internet safety, students are reminded how to use the internet safely. At the end of the year, we introduce visual programming using Scratch. Every industry uses computers so naturally computer scientists can work in any. Problems in science, engineering, health care, and so many other areas can be solved by computers. It's up to the computer scientist to figure out how and design the software to apply the solution.

Information Technology is concerned with how computers and telecommunications equipment work, and how they may be applied to the storage, retrieval, transmission and manipulation of data. In Year 7, we introduce the distinction between software and hardware and how these are used to effectively use computer systems.

Digital Literacy is the ability to effectively, responsibly, safely and critically navigate, evaluate and create digital artefacts using a range of digital technologies. In Year 7 we introduce the use of flat file databases in the form of an Excel spreadsheet in a business context. Building digital literacy means that students can look for employment in the media (broadcast engineer, multimedia broadcaster, sound technician) military (armed forces technical officer, intelligence officer, satellite technician) or finance (credit analyst, commodity broker, financial risk analyst).

1 – AUT A	2 – AUT B	3 – SPR A	4 – SPR B	5 – SUM A	6 – SUM B
EFFECTIVE & SAFE USE	EXPLORING WEB	WHAT IS A	DATA & INFORMATION	ALGORITHMS	GAME
OF ICT SYSTEMS	TECHNOLOGY	COMPUTER?	PROCESSING		DESIGN
				In KS2, students should	
t is important that	In this unit students	In this unit students	In this unit students	have been exposed to	In KS2,
students understand how	develop their	develop their	develop an understanding	basic algorithms. In this	students
o use ICT effectively and	understanding of how the	understanding of what a	of data.	unit, we build upon this	should have
safely. Building on what	internet can be used and	computer is, how a	They will be able to	knowledge by modelling	been exposed
hey have learnt at	manipulated. By designing	computer works and	recognise the difference	solutions to some	to block codin
Primary school, the first	and creating a website of	recognise the common	between data and	common algorithms.	using Scratch
hing we teach students at	their own, students can	components that make up	information. Students will	angermane.	or MicroBit
EWA is how to access the	better understand that,	a computer system.	understand different data	Students can then	block builder.
computer systems on site	just because it is on the	a compater cycleriii	capture methods and be	develop their abilities	Diodit Dalidon
and remotely from home	internet, it is not	Students will be able to	able to explain the	further by applying	In this unit we
by developing an	necessarily true.	identify different input and	benefits and drawbacks of	computational thinking to	build upon this
understanding of security	We allow students to	output devices and	each method.	decompose a given task,	knowledge by
and the different ways of	develop their creativity by	recognise a variety of	Once data is captured,	use abstraction to identify	introducing
securing a computer	designing and building a	computer systems and	students will be able to	any repeated sequences	game design
system.	website using text based	where they are used in	identify a suitable method	and represent the final	theory and
	and WYSIWYG editors.	everyday life.	of recording the data for	algorithm in a simple	allowing the
Students learn why		overyddy me.	processing using a flat-file	diagrammatic format of a	students to
passwords are important,	The students investigate	Pupils will be able to	database structure.	flow chart.	develop an
now they can be	websites and can identify	identify the purpose of a	Students will also be	now onara	idea into a full
generated and what	common web furniture	CPU and explain why it is	taught how the data within	Verbal feedback is used to	working game
makes a good password.	including external	important to computing	a flat-file database can be	ensure students are able	womang gamo
Without this basic	hyperlinks, images,	speed.	manipulated and	to achieve success in the	Student are
understanding of safety,	animations, text, dynamic	opood.	processed using formulae,	production phase. Live	introduced to
students; and their	content and navigation	In understanding how	sorting and filters.	marking will be used to	storyboards
personal data; are	systems.	computer systems work		accurately assess student	and how these
/ulnerable to exploitation.	, , , , , , , , , , , , , , , , , , , ,	students can use the	Verbal feedback is used to	performance in practical	can be used to
We believe it is important	This unit provides	binary number system to	ensure students are able	tasks using the product	turn an idea
o embed this	students with a potential	represent different	to achieve success in the	rubric for guidance.	into a reality.
understanding as soon as	career path with some	characters using ASCII	production phase. Live	3	,
possible before they begin	students continuing their	coding.	marking will be used to	END POINT TEST &	Students
naving access to mobile	education to produce	3	accurately assess student	THERAPY	extend their
phones and social media	websites for themselves,	Verbal feedback is used to	performance in practical		game
accounts with limited	friends and family.	ensure students are able	tasks using the product	Students will be able to	knowledge an
monitoring.	,	to achieve success in the	rubric for guidance.	breakdown a task into	software
0	Verbal feedback is used to	production phase. Live	3	small steps and then	capabilities
Throughout the year, we	ensure students are able	marking will be used to	Datamining is one of the	present the algorithm in	using triggers
ntroduce students to the	to achieve success in the	accurately assess student	biggest growing careers	the form of a flow chart	and
different functions of the	production phase. Live	performance in practical	fields with research,	using the correct notation	consequences

computer system through a range of small projects focused around internet safety that develop their ability to use a variety of different software packages effectively. This also helps prepare them for using ICT across the curriculum for completing tasks in other subjects.

Ethical, Legal and
Environmental issues are
explored to give students
an understanding of how
the use of ICT can impact
on themselves and
society. We look at
Privacy & Security, Data
Protection and the cost to
the environment of making
and using ICT hardware.

END POINT TEST & THERAPY

Verbal feedback is used to ensure students are able to achieve success in the production phase. Live marking will be used to accurately assess student performance in practical tasks. marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Students create a website based on proposed design incorporating required elements and for additional credit, use CSS to change layout and colour schemes.

A rubric will be used to inform students of their performance in the practical execution of the designed product allowing autonomous feedback on their current achievements and identify how to improve.

tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Students can identify different input, output and peripheral devices.

Students can explain how a CPU works.

analyst and engineering opportunities offering salaries ranging from 25k to 100k.

END POINT TEST & THERAPY

When given a block of data students can design and generate a flat-file data structure suitable for holding the data and allow sorting and filtering of the data to find specific information.

and symbols to represent and processes or decisions required in the solution. to identify a winner.

Verbal feedback is used to ensure students are able to achieve success in the production phase. Live marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

The design is assessed to identify if the game is viable.

Students develop their analytical skills by creating the game and then comparing the final version to the design to identify any differences.

Year 8 Curriculum implementation

Information Technology is concerned with how computers and telecommunications equipment work, and how they may be applied to the storage, retrieval, transmission and manipulation of data. In Year 8, we look at how ICT can be used in the real world.

Digital Literacy is the ability to effectively, responsibly, safely and critically navigate, evaluate and create digital artefacts using a range of digital technologies. ICT takes a broader approach and focuses on the way in which digital information is communicated. IT career opportunities are explored include, App developer, Graphic Design Software Development, Animation and Accounting.

1 – AUT A	2 – AUT B	3 – SPR A	4 – SPR B	5 – SUM A	6 – SUM B
I - AOI A	2 - AUI B	3 – 3FR A	4 - 3FK B	5 – 30W A	0 - 30W B
WHAT IS A	MOVIE MAKING	GRAPHICS	ANIMATION	SPREADSHEETS	MICROBIT
COMPUTER?					PROGRAMMING
	Studying filmmaking is	Students will learn about	Students will learn how to	Students will learn how to	Following on from Year 7
In this unit students will	valuable because it lets	how graphics are created	plan and develop an idea	use software effectively to	modular programming
realise the importance of	students be creative, tell	and the significance of	using several types of	produce a working	with Scratch, this unit
finding, recording and	compelling stories through	image resolution.	software and tools	spreadsheet using	extends the students
selecting suitable	visuals, and develop skills	Students will be able to	together to meet the given	effective Formulae and	understanding by using
information from a variety	in storytelling, teamwork,	identify the correct file	design brief.	Functions including	the MicroBit to bring the
of sources to meet the	and problem-solving. They	formats to use for	Students will develop their	IF statements, Conditional	programming from the
requirements of a specific	will also gain technical	producing graphics for a	skills in animation	Formatting, Graphs and	screen into their hands.
given task.	expertise, understand	specific purpose or media.	software using: Layers,	Charts, Sorting, Filters,	The students will generate
Students will be able to	global perspectives, and	Studente will develop on	Frames, Keyframes, Tween and Movement.	Spinners, Modelling and "What if" statements	several programs that demonstrate common
identify how to validate the	have opportunities for	Students will develop an understanding of different	Tween and Movement.	vvnat ii statements	programming techniques
data they find and how to	entrepreneurship.	graphics packages	Students will use criteria	Verbal feedback is used to	including selection,
use the information to	Studying filmmaking can	available and the	and feedback from others	ensure students are able	iteration, inputs and
investigate where the raw	open doors to various	importance of layout,	to improve my work and	to achieve success in the	outputs.
materials are obtained	career paths and personal	white space, colour	explain choices made in	production phase. Live	Verbal feedback is used to
and how computer	growth, making it a	palettes and typography	presenting information for	marking will be used to	ensure students are able
components are	worthwhile and versatile	when creating a graphic	different purposes and	accurately assess student	to achieve success in the
manufactured and	pursuit.	for a given purpose.	audiences.	performance in practical	production phase. Live
produce a report on the				tasks using the product	marking will be used to
Fourth Industrial	In essence, studying	Produce a book cover	Verbal feedback is used to	rubric for guidance.	accurately assess student
Revolution.	filmmaking offers a mix of	that meets the specific	ensure students are able		performance in practical
	creative and practical	design brief provided.	to achieve success in the	END POINT TEST &	tasks using the product
Students will be able to	skills, fostering personal	Verbal feedback is used to	production phase. Live	THERAPY	rubric for guidance.
select suitable pre-	and professional growth,	ensure students are able	marking will be used to		
production design tools	whether the students	to achieve success in the	accurately assess student	Each lesson students	
and industry standard	pursue a career in the film	production phase. Live	performance in practical	answer a series of hinge	END POINT TEST &
documentation to design	industry or apply the skills	marking will be used to	tasks using the product	questions based upon the	THERAPY
and create an effective	elsewhere. Students will	accurately assess student	rubric for guidance.	learning from the previous	
Podcast.	be encouraged to think	performance in practical		lesson allowing the	Each lesson students
	globally as the			teacher to check the	answer a series of hinge

Verbal feedback is used to ensure students are able to achieve success in the production phase. Live marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Each lesson students answer a series of hinge questions based upon the learning from the previous lesson allowing the teacher to check the students understanding and repair any misconceptions. A rubric has been created for both projects that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions. students' can use self and peer assessment to gauge their own progress and performance.

requirements of a student in England may be completely different to the requirements of a student in India.

END POINT TEST & THERAPY

Each lesson students answer a series of hinge questions based upon the learning from the previous lesson allowing the teacher to check the students understanding and repair any misconceptions. A rubric has been created for the project that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions. students' can use self and peer assessment to gauge their own progress and performance.

tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Each lesson students answer a series of hinge questions based upon the learning from the previous lesson allowing the teacher to check the students understanding and repair any misconceptions.

A rubric has been created for the project that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions, students' can use self and peer assessment to gauge their own progress and performance.

END POINT TEST & THERAPY

Each lesson students answer a series of hinge questions based upon the learning from the previous lesson allowing the teacher to check the students understanding and repair any misconceptions.

A rubric has been created for the project that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions, students' can use self and peer assessment to gauge their own progress and performance.

students understanding and repair any misconceptions.

A rubric has been created for the project that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions, students' can use self and peer assessment to gauge their own progress and performance.

questions based upon the learning from the previous lesson allowing the teacher to check the students understanding and repair any misconceptions.

A rubric has been created for the project that will allow students to measure their success in the different areas of design and execution of the challenges. In assessing the designs and final presented solutions, students' can use self and peer assessment to gauge their own progress and performance.

Year 9 Curriculum implementation

Computer Science is the scientific and practical study of computation. The sequencing of lessons allows students to develop their knowledge as they progress through the year groups. Programming skills are developed further in Year 9, where we introduce programming in Python; a high-level programming language and program documentation using flow charts and algorithms.

Information Technology is concerned with how computers and telecommunications equipment work, and how they may be applied to the storage, retrieval, transmission and manipulation of data. Year 9, we look further at software by looking at the features of operating systems and look further at the different types of input and output hardware.

Digital Literacy is the ability to effectively, responsibly, safely and critically navigate, evaluate and create digital artefacts using a range of digital technologies. In Year 9, we build on this knowledge by introducing Relational Databases and extend it further in KS4 by looking at sorting and filtering algorithms. The creation of digital artefacts is integral to much of the learning of Computing. Digital artefacts take many forms including digital images, computer programs, spreadsheets and animations.

1 – AUT A	2 – AUT B	3 – SPR A	4 – SPR B	5 – SUM A	6 – SUM B
BINARY	HARDWARE / SOFTWARE	DATA SECURITY	RELATIONAL DATABASES	EXTENDED ALGORITHMS	PYTHON PROGRAMMING
Building on the WHAT IS		Building on the			
A COMPUTER? unit from	Building further on the	EFFECTIVE & SAFE USE	Building on the DATA &	Building on the	Building on the GAME
previous years, this unit	WHAT IS A COMPUTER	OF ICT SYSTEMS unit	INFORMATION	ALGORITHMS unit from	DESIGN unit from Year 7
allows students to develop	unit from previous years	from Year 7 students	PROCESSING unit from	Year 7 this unit looks at	this unit looks at moving
their understanding of how	students develop an	develop the skills to use	Year 7 students develop	more complex algorithms	away from the block
binary numbers can be	understanding of the	data, information and	an understanding of how	and allows students to	building form of coding
used to program	functions of Operating	images harvested from	data can be classified into	further develop their ability	and introduces text
computers, how we can	Systems and how sensors	the information in an	different data types and	to draw solutions from	programming using
communicate binary	can be used to automate	ethical manner	the significance of	scenarios.	Python.
numbers easily using	input and output.	considering the legal	choosing the right data		
hexadecimal and how to		implications and	type for storing	By modelling solutions to	While coding and
convert a number	Students are introduced to	ramifications should they	information for	given scenarios students	programming are very
between binary,	computer network	fail to comply with	manipulation, sorting and	will be able to recognise	similar and the terms are
hexadecimal and denary.	topologies and develop an	legislation.	filtering.	how to break down	often used together, there
	appreciation for design			(decompose) a problem	are some important
We look at the limitations	choices considering	Students are introduced to	Students are introduced to	into a series of steps	differences between the
of ASCII and how the	geographical location,	some of the other main	Relational database	(algorithm) whilst looking	two. Coding, in its
character s available can	planned expansion and	laws that relate to	structures and learn how	for any repeating sections	simplest form, is the
be increased using	financial limitations.	computing: The Computer	these structures make it	(pattern recognition) that	process of writing
Unicode.		Misuse Act, The Data	easier to work with large	can be automated or	instructions. Programming
_	END POINT TEST &	Protection Act and the	amounts of data. The	simplified into a routine.	is taking those instructions
Students develop an	THERAPY	Freedom of Information	benefits and drawbacks		and making the target act
understanding of how		Act as well as GDPR	are explored and	As humans we are very	according to them.
computers generate and	Based on given scenario,	regulations.	compared to the flat-file	adept at searching and	
store graphics and sounds	students can draw a		data structures they	sorting without paying	Verbal feedback is used to
using bit patterns and	network diagram to show	In this unit students also	encountered in Year 7.	much attention to how we	ensure students are able
bitmaps.	the structure and	look at the need for data		complete the task. In this	to achieve success in the

Logic gates are introduced so that students can develop an understanding of how binary values can be changed depending on the logic circuit design.

END POINT TEST & THERAPY

Students will be able to correctly convert numbers between binary, denary and hexadecimal. Students can generate truth tables to track the binary values as data bits travel through a logic circuit. Students can map a sound wave into a digital representation and generate an image bitmap using bit patterns.

components of a data network with justification for their design choices. backups and explore the different options available.

END POINT TEST & THERAPY

Based on given scenario, students can recognise the correct legal infringement and suggest ways to avoid prosecution.

Students can identify the correct backup method for a given situation taking into account legal, ethical and financial considerations.

Verbal feedback is used to ensure students are able to achieve success in the production phase. Live marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Students will be able to generate basic queries using SQL and database tools to link the data between tables.

Students can generate reports to present the information to the user based on sorting and filters generated in the queries.

unit students will gain an understanding of the different methods that can be employed to search for an item in a given list and what a computer needs to know to put a list into some form of order

Verbal feedback is used to ensure students are able to achieve success in the production phase. Live marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Students will be able to breakdown a task into small steps and then present the algorithm in the form of a flow chart using the correct notation and symbols to represent and processes or decisions required in the solution.

production phase. Live marking will be used to accurately assess student performance in practical tasks using the product rubric for guidance.

END POINT TEST & THERAPY

Students will be able to generate a computer program that correctly performs the required function.

Year 10 Curriculum implementation

In Year 10, we further develop Computer Science ability by looking at the skills students will need beyond school and focus on career skills as well as academic knowledge. We focus on the three main careers areas relating to computing. Computer Programming, Networks and Network Security and Data Management.

By providing students with a knowledge of the industry-standard, Systems Development Life Cycle methodology, students can appreciate how software is developed in the real world. By improving their programming design abilities and their coding skills students will be able to move on to college or work with confidence. Students are taught about the different network architectures and topologies that currently exist and the myriad of protocols that run on the different network layers available so that they can develop knowledge and skills that will allow them to study this topic further and build on the skills they will need to succeed in this field of computing. In the world we live in data plays a large part in our everyday lives from Online Shopping; tracking what we buy, how much we spend and where we shop to Wearable technology; tracking our steps and recording our movements. Having the skills to harvest, store and manipulate data is a useful skill in today's career marketplace. We provide students with an understanding of this career field so that they can choose to develop their skills in this area further through college or employment.

1 – AUT A	2 – AUT B	3 – SPR A	4 – SPR B	5 – SUM A	6 – SUM B
In this unit students can	In this unit students	In this unit students can	In this unit students can	Based upon knowledge	In this unit students will
develop their	investigate the different	further develop their	further develop their	from previous years	develop further their
programming skills further	method of searching and	understanding of	understanding of software.	students will be able to	knowledge and
by applying the theoretical	sorting using	computer functionality by	Being able to identify	discuss the advantages	understanding of
knowledge gained in	programming logic.	applying the theoretical	Application and System	and disadvantages of	Relational Databases.
previous years to		knowledge gained in	Software, recognising the	computer networks	
providing actual solutions	They will be able to	previous years to specific	functions performed by	relating to network type,	Students will be able to
to given programming	compare the different	functions such as storing	the Operating System and	topology and connectivity.	recognise logical links
challenges. Students will	options and select the	and displaying sounds	how programs need to be		between data and be able
be able to decompose a	right method for given	and graphics.	converted for machine	Students will learn the	to use normalisation tools
task to generate a suitable	scenarios based on		processing using	term network protocol and	to create data tables and
algorithm. They will then	expected results and	Students will know the	Translators, Compilers or	be able to explain the	generate logical links
be able to refine the	efficiency.	impact storage has on the	Assemblers.	purpose and use of	between the data.
algorithm using		overall performance of a		common network	
abstraction to create a	Students will be able to	program and the computer	Students will extend their	protocols. Students will	Students will be able to
flow charts to represent	understand data	system.	knowledge of computing	learn the functions and	interrogate a data
the algorithm.	structures and manipulate		hardware and develop an	protocols associated with	structure using Structured
	data based on selective	Students will be able to	appreciation for the	each of the layers in the	Query Language. SQL is
Revision activities:	criteria.	understand further how	different system	TCP/IP model.	the standard language for
number representation.		computers can compress	architectures available.		relational database
Binary to Hex	Students will develop a	data using Huffman		Network security will be	management systems and
conversions. Denary to	further appreciation of	coding and Run Length	The importance of correct	covered with students	allows a student to
Binary conversions.	how programs can go	Encryption.	Hardware selection will be	able to explain	search, sort and filter data
Understand how	wrong and be able to		taught relating to cost,	different methods of	using programming tools.
computers are used to	distinguish between	By understanding Boolean	performance and	network security and the	
create and store data	different error types.	logic further, students will	functionality.	associated exploits they	END POINT TEST &
using ASCII and Unicode.		be able to understand how		are designed to protect	THERAPY
Be able to calculate file	END POINT TEST &	a computer processes the	Storage needs and the	against.	
sizes for images and	THERAPY	binary data it receives and	different methods of		

sound files. Be able to		manipulates that data to	storing data both locally	END POINT TEST &	Exam style questions will
represent images using	Exam style questions will	perform tasks.	and remotely will be	THERAPY	be completed at the end
binary code and convert	be completed at the end		studied so that students		of this unit to ensure all
sound waves into binary	of this unit to ensure all	END POINT TEST &	are aware of the legal and	Exam style questions will	students know all the
data.	students know all the	THERAPY	ethical requirements	be completed at the end	required materials.
uata.		ITIERAFI	•		required materials.
5	required materials.		relating to personal data	of this unit to ensure all	
Revision		Students will be able to	and it's processing	students know all the	
END POINT TEST &		correctly draw logic circuit	relating to Cloud Storage.	required materials.	
THERAPY		diagrams and truth tables			
		for given Boolean logic	END POINT TEST &		
A rubric has been created		equations.	THERAPY		
for each programming					
task that will allow		Exam style questions will	Exam style questions will		
students to measure their		be completed at the end	be completed at the end		
		•	•		
success in the different		of this unit to ensure all	of this unit to ensure all		
areas of design and		students know all the	students know all the		
execution of the mini		required materials.	required materials.		
program challenges. In					
assessing the presented					
solutions, students' can					
monitor their own					
progress and assess their					
own performance.					

Year 11 Curriculum implementation

In Year 11, we further develop Computer Science ability by looking at the skills students will need beyond school and focus on career skills as well as academic knowledge. We focus on the cyber security and look at the impact ICT and computing has on society by considering the health, social, economic and legal issues that arise from the deployment, use and disposal of computer systems and the data they contain.

1 – AUT A	2 – AUT B	3 – SPR A	4 – SPR B	5 – SUM A	6 – SUM B
In this unit students can	Students continue their	It is important that students	In this unit we will look at	In tis unit we will revisit	
develop their	study of Cyber Security	can retain the information	the different types of	some of the common	
programming skills further	where they are introduced	that they have been taught.	software and how it can be	programming skills	
by applying the theoretical	to social engineering and	l l l l l l l l l l l l l l l l l l l	written by humans and	required such as the use	
knowledge gained in	the methods that can be	Students will revisit the	interpreted by computers to	of variables, data types,	
previous years to	employed to protect a	importance of binary	perform specific tasks.	function calls and	
providing actual solutions	computer system, network	numbers and their		structure.	
o given programming	and the data contained	significance in computing.	We will revisit the		
hallenges. Students will	within.	Looking at how data can be	performance and	We will ensure that	
be able to decompose a		processed using binary	functionality of a computer	students are able to read	
ask to generate a suitable	In this unit students also	additions and binary shifts	system looking at the input,	and write to and from	
algorithm. They will then	develop an understanding	as well as recognising the	output and peripherals	external data files.	
be able to refine the	of the social, legal and	orders of magnitude and	available. We will study the		
algorithm using	ethical problems that exist	their respective titles and	hardware configuration of	Students will be able to	
abstraction to create a	within the realms of	symbolic reference.	the Von Neumann	describe and evaluate	
low charts to represent	computing. From the		architecture for a CPU and	sort methods such as a	
the algorithm.	rights and responsibilities	We will revisit how data is	recap the different	bubble sort or a merge	
	of storing and processing	stored and presented for	functions of the operating	sort.	
Students are introduced to	data to the issues	Graphics and Sound with	system.		
Cyber Security.	surrounding the disposal	compression techniques		Students will be able to	
	of legacy hardware	such as Huffman Coding		describe and evaluate	
END POINT TEST &	equipment.	and RLE. Boolean Logic is	END POINT TEST &	search methods such as	
HERAPY		also revisited ensuring	THERAPY	a linear search or a binary	
	END POINT TEST &	students understand		search.	
A rubric has been created	THERAPY	thoroughly Algebraic	Exam style questions will		
or each programming		equations, Truth Tables	be completed at the end of		
ask that will allow	Exam style questions will	and Circuit Diagrams	this unit to ensure all	END POINT TEST &	
students to measure their	be completed at the end		students know all the	THERAPY	
success in the different	of this unit to ensure all	END POINT TEST &	required materials.		
reas of design and	students know all the	THERAPY		Exam style questions will	
execution of the mini	required materials.			be completed at the end	
program challenges. In		Exam style questions will be		of this unit to ensure all	
assessing the presented		completed at the end of this		students know all the	
solutions, students' can		unit to ensure all students		required materials.	
monitor their own		know all the required			
		materials.			

progress and assess their			
own performance.			